From 1 - 3 / 3
  • NDI Carrara 1 is a deep stratigraphic well completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI), in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-Basin, a newly discovered depocentre in the South Nicholson region. The well intersected Proterozoic sediments with numerous hydrocarbon shows, likely to be of particular interest due to affinities with the known Proterozoic plays of the Beetaloo Sub-basin and the Lawn Hill Platform, including two organic-rich black shales and a thick sequence of interbedded black shales and silty-sandstones. Alongside an extensive suite of wireline logs, continuous core was recovered from 283.9 m to total depth at 1750.8 m, providing high-quality data to support comprehensive analysis. Presently, this includes geochronology, geochemistry, geomechanics, and petrophysics. Rock Eval pyrolysis data demonstrates the potential for several thick black shales to be a source of hydrocarbons for conventional and unconventional plays. Integration of these data with geomechanical properties highlights potential brittle zones within the fine-grained intervals where hydraulic stimulation is likely to enhance permeability, identifying prospective Carrara Sub-basin shale gas intervals. Detailed wireline log analysis further supports a high potential for unconventional shale resources. Interpretation of the L210 and L212 seismic surveys suggests that the intersected sequences are laterally extensive and continuous throughout the Carrara Sub-basin, potentially forming a significant new hydrocarbon province and continuing the Proterozoic shale play fairway across the Northern Territory and northwest Queensland. This abstract was submitted and presented at the 2022 Australian Petroleum Production and Exploration Association (APPEA), Brisbane (https://appea.eventsair.com/appea-2022/)

  • The NDI Carrara 1 sedimentology, microstructural analysis and sequence stratigraphy program was a joint undertaking between Geoscience Australia (GA) and CSIRO (Perth) as part of the Exploring for the Future program to examine the sedimentology, sequence stratigraphy and paleogeography of the Carrara Sub-basin. The program was based on recovered core from the National Drilling Initiative (NDI) deep stratigraphic drill hole, NDI Carrara 1. NDI Carrara 1 is the first drill hole to intersect the Proterozoic rocks of the Carrara Sub-Basin, a large depocentre discovered during seismic acquisition conducted during the first phase of the EFTF program in 2017. NDI Carrara 1 is located on the western flanks of the Carrara Sub-basin, reaching a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and siliciclastics. This final report, and associated appendices, compiles the findings of three milestone deliverables. The first component of the report addresses the sedimentology of the Proterozoic section of NDI Carrara 1 with an accompanying Appendix (core log, from HyLogger data). The second component is a detailed microstructural analysis based on selected thin sections in intervals of interest. The final component completed a 1D sequence stratigraphic assessment, enabling regional stratigraphic correlations to be established and an interpretive paleogeographic map generated for the Proterozoic sequences of interest across the region .

  • The energy component of Geoscience Australia’s Exploring for the Future (EFTF) program aimed to improve our understanding of the petroleum resource potential of northern Australia. The sediments of the Mesoproterozoic South Nicholson Basin and the Paleoproterozoic Isa Superbasin on the northern Lawn Hill Platfrom (nLHP) are primary targets of the EFTF program, as they are known to contain highly prospective organic-rich units with the potential to host unconventional gas plays. A defining feature of shale gas plays is that they require technological intervention to increase bulk rock permeability and achieve commercial flow rates. The Egilabria prospect, intersecting nLHP sediments in northwest Queensland, flowed gas to surface from a fracture-stimulated lateral well, demonstrating a technical success. Elsewhere in the region, shale gas prospectivity is limited by a lack of well data. Shale rock brittleness in the nLHP part of the Isa Superbasin was analysed in two studies under the EFTF program. These studies showed that shale brittleness ranges from ductile to brittle; zones of brittle shales were present in all supersequences. Shale brittleness is controlled by increasing quartz and decreasing clay content, with carbonate content proving insignificant. Organic-rich target zones in the Lawn and River supersequences are demonstrated to be brittle and favourable for fracture stimulation. <b>Citation:</b> Bailey, A.H.E., Jarrett, A.J.M., Wang, L., Champion, D.C., Hall, L.S. and Henson, P., 2020. Shale brittleness in the Isa Superbasin on the northern Lawn Hill Platform. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.